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Abstract

In biomedical research, challenges to working with multiple events are often observed while
dealing with time-to-event data. Studies on prolonged survival duration are prone to having
numerous possibilities. In studies on prolonged survival, patients might die of other causes.
Sometimes in the survival studies, patients experienced some events (e.g. cancer relapse)
before dying within the study period. In this context, the semi-competing risks framework
was found useful. Similarly, the prolonged duration of follow-up studies is also affected
by censored observation, especially interval censoring, and right censoring. Some conven-
tional approaches work with time-to-event data, like the Cox-proportional hazard model.
However, the accelerated failure time (AFT) model is more effective than the Cox model
because it overcomes the proportionality hazard assumption. We also observed covariates
impacting the time-to-event data measured as the categorical format. No established method
currently exists for fitting an AFT model that incorporates categorical covariates, multiple
events, and censored observations simultaneously. This work is dedicated to overcoming the
existing challenges by the applications of R programming and data illustration. We arrived
at a conclusion that the developed methods are suitable to run and easy to implement in R
software. The selection of covariates in the AFT model can be evaluated using model se-
lection criteria such as the Deviance Information Criteria (DIC) and Log-pseudo marginal
likelihood (LPML). Various extensions of the AFT model, such as AFT-DPM and AFT-LN,
have been demonstrated. The final model was selected based on minimum DIC values and
larger LPML values.

Key words: censoring, illness-death models, accelerated failure time model, Bayesian Sur-
vival Analysis, semi-competing risks.

1. Background

Survival analysis is one of the important fields of mathematical statistics and expands to
deal with time-to-event data when interest is intended on time and before passing the time
an event has occurred, then this kind of data arises. Besides, including statistical methods,
it is used for analyzing the time until an event of interest has occurred, where the event is
death, the occurrence of any reasonable disease, or other experience of interest. However,
we cannot expect each participant to experience the event of interest (like death, cancer)
within the study period and get the real data. The prolonged duration of the study period
is also affected by censored observation, especially interval censoring, and right censoring.
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We expect subjects to experience only one type of event over follow-up like death from
cancer. But in real life, there are so many types of possibilities that subjects can experience
more than one type of event in the study period. If death is our interest, then from our ob-
servation, we can see that some patients can die from cancer or any traffic accident or in a
sudden heart attack. When this kind of event occurs, we refer to these events as "competing
events" and the probability of these events as "competing risks." To better understand com-
peting risk scenarios, we can think of a patient who may die from cancer or a heart attack,
but he cannot die from both. Sometimes the non-terminal event (like cancer relapse, or read-
mission) is our research interest. Still, the terminal event (e.g. death) averts the case of the
non-terminal event, and it is remarked as semi-competing risk data (Haneuse et al. 2016).
Innately we can think of participants of these settings as transitioning through a series of
states. For example, we can take cancer relapsing as the non-terminal event and death as the
terminal event. Semi-competing risks are inclusive in studies of aging. Here we will give an
example for a better understanding of a semi-competing event scenario: a patient who may
experience cancer relapse. After some time, he dies of cancer. We can represent the semi-
competing risks data in one or more of three transitions: 1) Transition 1: initial condition to
the non-terminal event. 2) Transition 2: initial condition to a terminal event. 3) Transition
3: non-terminal events to the terminal event. Semi-competing risks visit the setting where
our interest lies to infer a non-terminal event (e.g., disease recurrence, cancer relapse) and
a terminal event (e.g., death) and, if possible, for both cases. Let Ti1 and Ti2 denote time to
the non-terminal event and also the terminal event for the ith study participant respectively.
A sturdy association exists between the event’s time, so we cannot apply the univariate sur-
vival model because it will take the terminal event as an independent event and supply us
with overestimated biased results. The semi-competing risks analysis framework appropri-
ately treats the terminal event as a competing event. It considers the dependence between
non-terminal and terminal events as a component of the model specification.

The Cox proportional hazard model (Prentice et al. 1992) is used to relate the survival
time of a subject to the covariate. We want to find out for which covariate the survival
time gets affected. Besides the Cox model, accelerated failure time (AFT) is the essential
regression model for censored data (Buckley et al. 1979). The AFT model helps us consider
the effect of covariates on survival time. It can offer new insight into risk factors associated
with the non-terminal event (cancer relapse) when we conduct such a study among older
people, and age is a very relevant factor. In this type of situation, data may have been
left truncation. If it is not handled appropriately, each of these situations can give us a
biased result of our analysis (Odell et al. 1992). While a statistician or a researcher has
so many options for handling these types of situations, there are some works that we have
considered. Most of these are on the Cox model for hazard function. About AFT models
for semi-competing risk data, there are some recent works, (Dam Ding et al. 2009; Ghosh
et al. 2012; Ghosh et al. 2006; Armero et al. 2016; Jiang et al. 2017), but each of them has
some limits as they do not consider left-truncation or interval-censoring.

So, this work is dedicated to overcoming the challenges in semi-competing risk data
when left-truncation and interval censoring are present. So, we adopt the flexible, study
Bayesian framework (Lee et al. 2017) for our analysis of the simulated data as both cen-
sorings are adopted in their model. One of the advantages of this framework is we can
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take parametric and semi-parametric forms for our baseline survival distribution. We ob-
tained that the developed methods using the functions named BayesID_AFT and initi-
ate.startValues_AFT, which are suitable to run with the help of SemiCompRisks (Lee
et al. 2015) packages in R.

2. Model Framework: Illness death Model

Semi-competing risk data are presented by the participants ready to encounter the two
kinds of events and possibly both. We modelled the association between covariates and the
two types of event time within the AFT model specification. Ti1 and Ti2 represent the time
of the non-terminal event and also the terminal event for the ith study participant. Here we
adopt the following AFT model specifications (model the times of the events directly) under
the illness death modelling framework:

log(Ti1) = xxxT
i1βββ 1 +κi + εi1, Ti1 > 0 (1)

log(Ti2) = xxxT
i2βββ 2 +κi + εi2, Ti2 > 0 (2)

log(Ti2 −Ti1) = xxxT
i3βββ 3 +κi + εi3, Ti2 > Ti1 (3)

where xxxig denotes the vector of transition-specific covariates ,i = 1, . . . ,n and g ∈ {1,2,3}.
βββ g represents the vector of transition specific regression parameters, and εig denotes the
transition-specific random variable whose distribution determines that of corresponding
transition time, g ∈ {1,2,3}. Finally, κi denotes the random effect of a specific subject
in each of (1)-(3) equations that instigates a positive sign of dependency between the two
event times.

Let us briefly consider the interpretation of the regression parameter in an AFT model.

From our model given by equation (1), we can write the survivor distribution for the ith

individuals:
S1(t;xi1) = S01{t × exp(−xxxT

i1β1)β1)β1)} (4)

where S01 represents the baseline survivor function between the individuals with xxxi1 = 0.
We can interpret this as a special case when the covariate is dichotomous. Let xi1 be simply
a dichotomous covariate with xi1 = 1 denoting individuals who have received treatment and
xi1 = 0 indicates those who did not take treatment. Equation (4) implies that the median
time ratio to reason 1 among treatment receiver and non-receiver is exp(β1). For example,
if xi1 was a treatment indicator and β1 = 0.4, we could say that individuals who received
the treatment survived 50% longer (as exp(0.4)≈ 1.50) than those individuals who did not
receive the treatment, and if β1 =−0.4 then we get exp(−0.4)≈ 0.67 which indicates 33%
shorter survival. If values of exp{βg} are less than 1.0 for the AFT model, then it indicates
an increased risk due to the specific factor. From these results, we can say that a negative
value of β suggests increased risk because the event occurs sooner in time.
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3. Semi-parametric approach in AFT Illness-Death model

There are several works carried on the AFT model through frequency and Bayesian
extension (e.g. Christensen et al. 1988; Kuo, L et al. 1997). In this work, we preferred to
work with Dirichlet Process Mixture (DPM) prior along with normal distribution for each
εig (Ferguson et al 1973). It helped us to draw εig independently from a mixture of Mg with
mean and variances from the normal distribution as (µgr,σ

2
gr), for r ∈ 1, ...,Mg. Perhaps, it

is difficult to identify the distributional form of the (µgr,σ
2
gr), so we take each component

from normal distribution as being specific to some class and since which class it belongs to
is not known to us we prefer to draw from Gg0 as a choice of centring distribution. If the
’true’ class of membership is not known to us, then pgr defines the probability to belongs
as rth class for transition g and pppg = (pg1, ..., pgMg) by the probabilistic representation. It
is safe to consider the conjugate symmetric. Dirichlet (τg/MG, ...,τg/MG) as a choice of
prior distribution while the class of memberships for the n individuals belongs to the Mg

classes, and τg is presented for the precision parameter. Therefore the mixture distribution
is presented as

εig|ri ∼ Normal(µri ,σ
2
ri
),

(µgr,σ
2
gr)∼ Gg0, for r = 1, . . . ,Mg,

ri|pppg ∼ Discrete(ri|pg1, . . . , pgMg),

pppg ∼ Dirichlet(τg/MG, ...,τg/MG).

(5)

Now Mg → ∞ is presented as DPM along with the normal distribution. This work is
presented as Gamma(aτg ,bτg ), and hyper-prior for τg. Now we can take the non-informative
flat priors through the real line aligned with the regression line. We can consider κi draws
from the Normal distribution with (0,θ) and finally presented as κ = {κ1, . . . ,κn}. Some-
times, we can consider the prior knowledge on the variance component θ and adopt the
conjugate of the inverse-Gamma hyperprior as IG (aθ ,bθ ). It is useful to proceed with Gg0

as a normal distribution with mean and variance µg0,σ
2
g0.

4. Parametric approach in AFT Illness-Death Model

Sometimes in a small-sample setting parametric-specific model looks more logical as it
is easy to handle. For the parametric AFT model, some distributions including Weibull, log-
logistic, and log-normal have been proposed for univariate time-to-event data. We consider
the log-normal formulation for Bayesian parametric analysis and εig are taken from an in-
dependent normal distribution with mean µg and variance σ2

g for g ∈ {1,2,3}. We consider
flat priors for location parameters (µ1,µ2,µ3) on the real line. Independent inverse gamma
distributions are considered for (σ2

g ) and denoted as IG (aσg ,bσg). We take the same priors
for βββ g, κ , and θ , which we took for the DPM model.
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5. Model comparison criteria

Most of the time, researchers and analysts balanced the compatibility of the specified
model with the limitation of the data. In this regard, it is critical to compare the models
concerning goodness-of-fit. We used two criteria for this: the deviance information criterion
(DIC; Spiegelhalter et al. 2002) and the log-pseudo marginal likelihood statistic (LPML;
Geisser et al. 1979). For DIC, we note that work (Celeux et al. 2006) gives a couple of
different DIC measures and discusses them in the context of mixture-based random-effects
models. In this context, we take their DIC3 measure based on their guides for our AFT
illness-death model given by (1)–(3) and propose the following measure:

DICID =−4EΘ[logL(t1i, t2i,Di|Θ)|t1i, t2i,Di]

+2log
n

∏
i=1

EΘ[L(t1i, t2i,Di|Θ)|ttt1,ttt2,{Di}n
i=n]

(6)

In equation (6) all model parameters are denoted by Θ, either {ΘSP,κ} or {ΘP,κ}. In
the equation (6) the first term is associated with a deviance that evaluates a goodness-of-fit
and the second term computes the measure of complexity. For the purpose of our analysis,
we estimate the DICID with the help of Monte Carlo approximation:

ˆDICID =− 4
Q

Q

∑
q=1

log

{
n

∏
i=1

L(t(q)1i , t(q)2i ,D |Θ(q))

}

+2log

{
n

∏
i=1

1
Q

Q

∑
q=1

L(t(q)1i , t(q)2i ,D |Θ(q))

} (7)

At the qth MCMC iteration, Θ(q) denotes the values of Θ, q = 1,2,3, . . . ,Q. A model
having a smaller DIC value suggests a better fit to the data.

The LPML (2nd comparison criteria) measure is basically the sum of the logarithms
subject-specific conditional predictive ordinates and given as ∑

n
i=1 logCPOi,

CPOi = L(ti1, ti2,Di|{t1k, t2k,Dk}k ̸=i)

≈

{
1
Q

Q

∑
q=1

L(t(q)1i , t(q)2i ,Di|Θq)−1

}−1 (8)

The approximation part in equation (8) pursues from the Monte Carlo estimator (Chen
et al. 2012). Note, a model having larger values of LPML suggests a better fit for the data.
In this context, one can use the pseudo-Bayes factor (PBF) for the two models by taking the
exponent of difference in their LPML values.

6. Data

For illustration purposes, we perform some analyses using our simulated data with the
primary goal of comparing the two models (parametric & semi-parametric). We simulate
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the data consisting of n=5000 on the frame of semi-competing risk data where the interest
lies in a non-terminal event that is subject to a terminal event which is a competing risk for
the non-terminal event but not vice versa. We have developed this kind of semi-competing
risk data frame with five dichotomous covariates and fit the model. Table 1 represents the
baseline characteristic (sex, race, etc.) of 5000 participants. We adopted interval censoring
and left truncation also. It also provides a 60-months summary of outcomes, overall and
within levels of the factors reported. From the first row of Table 1, we can see that 25.58%
participants are censored for both events and 25.24% experienced both events. We also
see that a total of 1239 individuals experienced the non-terminal event and were censored
for the terminal event, and 1220 participants have experienced the terminal event without
having the non-terminal event.

Beyond the overall rates, Table 1 reveals substantial variation in the distribution of the
four outcome types across levels of certain factors. We see, for example, that the rates at
which individuals have experienced both events within 60 months is 26.02% among the
individuals having I(1) = 1 to 24.03% among individuals having I(1) = 0.

Table 1: Overall information about covariates based on 5000 individuals experienced on
non-terminal and/or terminal events.

Total n(%) censored n(%) Non-terminal event only n(%) Terminal event only n(%) Both events n(%)
Total 5000 (100) 1279 (25.58) 1239 (24.76) 1220 (24.4) 1262 (25.24)

Covariate 1
I(1) = 1 3032 (60.64) 740 (24.41) 757 (24.97) 746 (24.60) 789 (26.02)
I(1) = 0 1968 (39.36) 539 (27.39) 482 (24.49) 474 (24.09) 473 (24.03)

Covariate 2
I(2) = 1 4532 (90.64) 1156 (25.51) 1123 (24.78) 1109 (24.47) 1144 (25.24)
I(2) = 0 468 (9.36) 123 (26.28) 116 (24.79) 111 (23.72) 118 (25.21)

Covariate 3
I(3) = 1 3896 (77.92) 991 (25.44) 983(25.23) 968 (24.84) 954 (24.49)
I(3) = 0 1104 (22.08) 228 (20.65) 256 (23.19) 252 (22.83) 288 (26.09)

Covariate 4
I(4) = 1 2550 (51) 649 (25.45) 637 (24.98) 648 (25.41) 616 (24.16)
I(4) = 0 2450 (49) 630 (25.71) 602 (24.57) 572 (23.35) 646 (26.37)

Covariate 5
I(5) = 1 2789 (55.78) 701 (25.13) 690 (24.74) 692 (24.81) 706 (25.31)
I(5) = 0 2211 (44.22) 578 (26.14) 549 (24.83) 528 (23.88) 556 (25.15)

7. Results

7.1. Overall model fit

Table 2 provides the calculated values obtained on AFT-LN and AFT-DPM by corre-
sponding DIC and LPML values. The models, i.e., AFT-LN and AFT-DPM, considered
the κi (random effect) and resulted in DIC values as 34810 and 30975. So, AFT-DPM is
relevant in this data analysis context compared to the AFT-LN model. Similarly, the sec-
ond measure (LPML) obtained on AFT-LN and AFT-DPM is -16156 and -15719. It also
confirms that AFT-DPM is more relevant than AFT-LN.
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Table 2: DIC and LPML for two proposed models fit to simulated data.

DIC LPML
AFT-LN 34810 -16156

AFT-DPM 30975 -15719

7.2. Analysis: Covariate effect

As mentioned earlier in Section 3, if values of expβg are less than 1.0 for the AFT
model, then it indicates an increased risk due to the specific factor. Table 3 presents the
posterior median (PM) and 95% credible interval for the regression parameter from our
analysis having a patient-specific random effect.

From the first column of Table 3, we have found proof that individuals with 0 indicators
for 1st covariate I(1) significantly increased for reason 1 for the AFT-DPM analyses. The
median time to reason 1 is estimated to be 6.5% shorter for these individuals than those with
one indicator for I(1).

We also find that individuals with 0 indicators for 2nd covariate I(2) have a lower risk of
reason 3. Their median time to reason 3 (non-terminal to terminal event) is estimated to be
64.7% and 7.6% longer than individuals who have the one indicator under the AFT-LN and
AFT-DPM model, respectively.

Table 3: Estimated posterior medians along with 95% credible intervals (CI) for transition
g = 1,2,3 based on two type of AFT-illness death model including the patient-specific ran-
dom effect.

Transition 1 (95% CI) Transition 2(95% CI) Transition 3 (95% CI)
Covariate 1

AFT-LN 1.432(1.235,2.280) 2.719(2.072,3.758) 1.578(1.468,2.351)
AFT-DPM 0.935 (0.893,0.966) 1.079(1.008,1.151) 1.082(1.053,1.108)
Covariate 2

AFT-LN 3.070(2.626,3.429) 2.080(1.828,2.659) 1.647(1.262,2.493)
AFT-DPM 1.127(1.099,1.155) 1.296(1.110,1.369) 1.076(0.984,1.087)
Covariate 3

AFT-LN 1.991(1.709,2.262) 2.385(2.129,4.117) 2.464(1.928,2.853)
AFT-DPM 1.045(1.031,1.105) 1.009(0.925,1.038) 1.079(1.056,1.149)
Covariate 4

AFT-LN 1.725(1.402,2.384) 1.758(1.602,2.351) 2.275(1.786,4.046)
AFT-DPM 1.058(1.058,1.058) 0.975(0.890,0.997) 1.208(1.042,1.851)
Covariate 5

AFT-LN 1.604(1.389,1.721) 2.697(1.596,3.605) 2.028(1.471,2.339)
AFT-DPM 1.073 (1.070,1.075) 1.181(0.895,1.417) 1.191(1.145,1.237)

8. Discussion

In this work, we discuss the semi-competing risks framework as a way of investigating
variation in risk for a non-terminal event where the occurrence of the event is subject to a
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terminal event. In this context, we have analyzed the semi-competing risk data using the
proposed AFT illness death model (Lee et al. 2017), which serves as a helpful complement
of the traditional hazard-based model of say (Xu et al. 2010) and (Lee et al. 2015).

Crucially the two modelling frameworks characterize associations through fundamen-
tally different contrasts (see Section 2.2) and, in this sense, jointly provide an expanded
scope for scientific inquiry. As such, reckoning on the scientific background and goals,
analysts may value more highly to consider one or the other or possibly both.

In this text, our main objective is to find which model is a better fit for our frame and
to estimate the effects of the covariates on the risk of the non-terminal event (e.g. cancer
relapse). At the same time, we assume that death plays a vital role in the analysis. We have
handled the data carefully as left truncation and interval censoring are present. If we do not
consider these things, we will get a biased result.

In this article, we build the framework through the Bayesian model, which will help the
researchers to take the advantage of well-known benefits including the ability to naturally in-
corporate prior information and the automated quantification of prediction and uncertainty.

Finally, we note that there are a number of ways in which one could build the proposed
framework. First, while the focus of this article has been on semi-competing risk data,
we have developed and implemented analogous parametric and semi-parametric univari-
ate AFT models in settings where left truncation and interval censoring are present. Such
a model might, for example, be useful if interest lies in whether there are differences in mor-
tality between patients with and without a diagnosis of Alzheimer’s and dementia. Some
specific areas where the model can be used include pregnancy, where delivery is the termi-
nal event and Preeclampsia will be the non-terminal event and palliative care where death
is the terminal event and readmission will be the non-terminal event.
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